Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change
نویسندگان
چکیده
We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ∼1000 sites (∼200 sites for PM2.5 components) and compared to results from the GEOS-Chem chemical transport model (CTM). All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH) is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40 % of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM) using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign), with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos) when diagnosing the effect of climate change on PM2.5, and suggest that analysis of meteorological modes of variability provides a computationally more affordable approach for this purpose than coupled GCM-CTM studies.
منابع مشابه
Impact of 2000–2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes
Studies of the effect of climate change on fine particulate matter (PM2.5) air quality using general circulation models (GCMs) show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statis...
متن کاملCorrelations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change
We applied a multiple linear regression (MLR) model to study the correlations of total PM2.5 and its components with meteorological variables using an 11-year (1998e2008) observational record over the contiguous US. The data were deseasonalized and detrended to focus on synoptic-scale correlations. We find that daily variation in meteorology as described by the MLR can explain up to 50% of PM2....
متن کاملStrong influence of 2000-2050 climate change on particulate matter in the United States: Results from a new statistical model
We use a statistical model to investigate the effect of 2000-2050 climate change on fine particulate matter (PM2.5) air quality across the contiguous United States. By applying observed relationships of PM2.5 and meteorology to the IPCC Coupled Model Intercomparision Project Phase 5 (CMIP5) archives, we bypass many of the uncertainties inherent in chemistry-climate models. Our approach uses bot...
متن کاملInfluence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model
We use a statistical model to investigate the effect of 2000–2050 climate change on fine particulate matter (PM2.5) air quality across the contiguous United States. By applying observed relationships of PM2.5 and meteorology to the IPCC Coupled Model Intercomparision Project Phase 5 (CMIP5) archives, we bypass some of the uncertainties inherent in chemistry-climate models. Our approach uses bot...
متن کاملUsing synthetic tracers as a proxy for summertime PM2.5 air quality over the Northeastern United States in physical climate models
[1] Fine particulate matter (PM2.5) is a criteria pollutant. Its sensitivity to meteorology implies its distribution will likely change with climate shifts. Limited availability of global climate models with full chemistry complicates efforts to assess rigorously the uncertainties in the PM2.5 response to a warming climate. We evaluate the potential for PM2.5 distributions in a chemistry-climat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012